Непрерывная случайная величина x задана плотностью распределения. Математическое ожидание непрерывной случайной величины. Пример решения. Найти функцию распределения F(x)

9. Непрерывная случайная величина, её числовые характеристики

Непрерывную случайную величину можно задать с помощью двух функций. Интегральной функцией распределения вероятностей случайной величины Х называется функция , определённая равенством
.

Интегральная функция даёт общий способ задания как дискретных, так и непрерывных случайных величин. В случае непрерывной случайной величины . Все события: имеют одну и ту же вероятность, равную приращению интегральной функции на этом промежутке, т.е.. Например, для дискретной случайной величины, заданной в примере 26, имеем:


Таким образом, график интегральной функции рассматриваемой функции представляет собой объединение двух лучей и трёх отрезков, параллельных оси Ох.

Пример 27 . Непрерывная случайная величина Х задана интегральной функцией распределения вероятностей

.

Построить график интегральной функции и найти вероятность того, что в результате испытания случайная величина Х примет значение в интервале (0,5;1,5).

Решение. На интервале
графиком является прямая у = 0. На промежутке от 0 до 2 – парабола, заданная уравнением
. На интервале
графиком является прямая у = 1.

Вероятность того, что случайная величина Х в результате испытания примет значение в интервале (0,5;1,5) находим по формуле .

Таким образом, .

Свойства интегральной функции распределения вероятностей:

Закон распределения непрерывной случайной величины удобно задавать с помощью другой функции, а именно, функции плотности вероятности
.

Вероятность того, что значение, принятое случайной величиной Х, попадает в интервал
, определяется равенством
.

График функции называется кривой распределения . Геометрически вероятность попадания случайной величины Х в промежуток равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми
.

Свойства функции плотности вероятности :


9.1. Числовые характеристики непрерывных случайных величин

Математическое ожидание (средним значением) непрерывной случайной величины Х определяется равенством
.

М(Х) обозначают через а . Математическое ожидание непрерывной случайной величины обладает аналогичными, как и дискретная величина, свойствами:

Дисперсией дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания, т.е. . Для непрерывной случайной величины дисперсия определяется формулой
.

Дисперсия обладает свойствами:


Последнее свойство очень удобно применять для нахождения дисперсии непрерывной случайной величины.

Аналогично вводится и понятие среднего квадратического отклонения. Средним квадратическим отклонением непрерывной случайной величины Х называется корень квадратный из дисперсии, т.е.
.

Пример 28 . Непрерывнаяслучайная величина Х задана функцией плотности вероятностей
в интервале (10;12), вне этого промежутка значение функции равно 0. Найти 1) значение параметра а, 2) математическое ожидание М(Х), дисперсию
, среднее квадратическое отклонение, 3) интегральную функцию
и построить графики интегральной и дифференциальной функций.

1). Для нахождения параметра а используем формулу
. Получим . Таким образом,
.

2). Для нахождения математического ожидания используем формулу: , откуда следует, что
.

Дисперсию будем находить по формуле:
, т.е. .

Найдём среднее квадратическое отклонение по формуле: , откуда получим, что
.

3). Интегральная функция выражается через функцию плотностей вероятностей следующим образом:
. Следовательно,
при
, = 0 при
и = 1 при
.

Графики этих функций представлены на рис. 4. и рис. 5.

Рис.4 Рис.5.

9.2. Равномерное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины Х равномерно на интервале , если её плотность вероятности постоянна на этом интервале и равна нулю вне этого интервала, т.е. . Легко показать, что в этом случае
.

Если интервал
содержится в интервале , то
.

Пример 29. Событие, состоящее из мгновенного сигнала, должно произойти между часом дня и пятью часами. Время ожидания сигнала есть случайная величина Х. Найти вероятность того, что сигнал будет зафиксирован между двумя и тремя часами дня.

Решение. Случайная величина Х имеет равномерное распределение, и по формуле найдём, что вероятность того, что сигнал будет между 2 и 3 часами дня, равна
.

В учебной и другой литературе часто обозначают в литературе через
.

9.3. Нормальное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины называется нормальным, если её закон распределения вероятностей определяется плотностью вероятности
. Для таких величин а – математическое ожидание,
- среднее квадратическое отклонение.

Теорема. Вероятность попадания нормально распределённой непрерывной случайной величины в заданный интервал
определяется по формуле
, где
- функция Лапласа.

Следствием этой теоремы является правило трёх сигм , т.е. практически достоверно, что нормальна распределённая, непрерывная случайная величина Х принимает свои значения в интервале
. Это правило выводимо из формулы
, являющейся частным случаем сформулированной теоремы.

Пример 30. Срок работы телевизора представляет собой случайную величину Х, подчинённую нормальному закону распределения, с гарантийным сроком 15 лет и средним квадратическим отклонением, равным 3 годам. Найти вероятность того, что телевизор проработает от 10 до 20 лет.

Решение. По условию задачи математическое ожидание а = 15, среднее квадратическое отклонение .

Найдём . Таким образом, вероятность работы телевизора от 10 до 20 лет более 0,9.

9.4.Неравенство Чебышева

Имеет место лемма Чебышева . Если случайная величина Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного в
.

Учитывая, что , как сумма вероятностей противоположных событий, получим, что
.

Теорема Чебышева. Если случайная величина Х имеет конечную дисперсию
и математическое ожидание М(Х), то для любого положительного справедливо неравенство

.

Откуда следует, что
.

Пример 31. Изготовлена партия деталей. Среднее значение длины деталей равна100 см., а среднее квадратическое отклонение равно 0,4см. Оценить снизу вероятность того, что длина наудачу взятой детали окажется не менее 99см. и не более 101см.

Решение. Дисперсия . Математическое ожидание равно 100. Следовательно, для оценки снизу вероятности рассматриваемого события
применим неравенство Чебышева , в котором
, тогда
.

10. Элементы математической статистики

Статистической совокупностью называют множество однородных предметов или явлений. Число п элементов этого множества называется объёмом совокупности. Наблюдаемые значения признака Х называют вариантами . Если варианты расположены в возрастающей последовательности, то получен дискретный вариационный ряд . В случае группировки вариант по интервалам получается интервальный вариационный ряд . Под частотой т значения признака понимают число членов совокупности с данной вариантой.

Отношение частоты к объёму статистической совокупности называют относительной частотой признака:
.

Соотношение между вариантами вариационного ряда и их частотами называют статистическим распределением выборки . Графическим представлением статистического распределения может служить полигон частот.

Пример 32. Путём опроса 25 студентов первого курса получены следующие данные об их возрасте:
. Составить статистическое распределение студентов по возрасту, найти размах варьирования, построить полигон частот и составить ряд распределения относительных частот.

Решение. Используя данные, полученные при опросе, составим статистическое распределение выборки

Размах выборки варьирования равен 23 – 17 = 6. Для построения полигона частот, строят точки с координатами
и последовательно их соединяют.

Ряд распределения относительных частот имеет вид:

10.1.Числовые характеристики вариационного ряда

Пусть выборка задана рядом распределения частот признака Х:

Сумма всех частот равна п.

Средним арифметическим выборки называют величину
.

Дисперсией или мерой рассеяния значений признака Х по отношению к его среднему арифметическому называют величину
. Средним квадратическим отклонением называют корень квадратный из дисперсии, т.е. .

Отношение среднего квадратического отклонения к среднему арифметическому выборки, выраженное в процентах, называют коэффициентом вариации :
.

Эмпирической функцией распределения относительных частот называют функцию, определяющую для каждого значения относительную частоту события
, т.е.
, где - число вариант, меньших х , а п – объём выборки.

Пример 33. В условиях примера 32 найти числовые характеристики
.

Решение. Найдём среднее арифметическое выборки по формуле , тогда .

Дисперсия признака Х находится по формуле: , т. е. . Среднее квадратическое отклонение выборки равно
. Коэффициент вариации равен
.

10.2. Оценка вероятности по относительной частоте. Доверительный интервал

Пусть проводится п независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р . В этом случае вероятность того, что относительная частота будет отличаться от вероятности появления события А в каждом испытании по абсолютной величине не больше, чем на , приближённо равна удвоенному значению интегральной функции Лапласа:
.

Интервальной оценкой называют такую оценку, которая определяется двумя числами, являющимися концами интервала, покрывающего оцениваемый параметр статистической совокупности.

Доверительным интервалом называют интервал, который с заданной доверительной вероятностью покрывает оцениваемый параметр статистической совокупности. Рассматривая формулу , в которой заменим неизвестную величину р на её приближённое значение , полученное по данным выборки, получим:
. Эта формула служит для оценки вероятности по относительной частоте. Числа
и
называют нижней и соответственно верхней доверительными границами , - предельной погрешностью для данной доверительной вероятности
.

Пример 34 . Заводской цех выпускает электрические лампочки. При проверке 625 ламп оказалось 40 бракованных. Найти с доверительной вероятностью 0,95 границы, в которых заключён процент брака лампочек, выпускаемых заводским цехом.

Решение. По условию задачи . Используем формулу
. По таблице 2 приложения находим значение аргумента, пи котором значение интегральной функции Лапласа равно 0,475. Получим, что
. Таким образом, . Следовательно, можно сказать с вероятностью 0,95, что доля выпускаемого брака цехом высока, а именно, изменяется в пределах от 6,2% до 6,6%.

10.3. Оценка параметров в статистике

Пусть количественный признак Х всей исследуемой совокупности (генеральной совокупности) имеет нормальное распределение.

Если среднее квадратическое отклонение известно, то доверительный интервал, покрывающий математическое ожидание а

, где п – объём выборки, - выборочная средняя арифметическая, t – аргумент интегральной функции Лапласа, при котором
. При этом число
называют точностью оценки.

Если среднее квадратическое отклонение неизвестно, то по данным выборки можно построить случайную величину, имеющую распределение Стьюдента с п – 1 степенями свободы, которое определяется только одним параметром п и не зависит от неизвестных а и . Распределение Стьюдента даже для малых выборок
даёт вполне удовлетворительные оценки. Тогда доверительный интервал, покрывающий математическое ожидание а этого признака с заданной доверительной вероятностью , находится из условия

, где S – исправленное среднее квадратическое, - коэффициент Стьюдента, находится по данным
из таблицы 3 приложения.

Доверительный интервал, покрывающий среднее квадратическое отклонение этого признака с доверительной вероятностью , находится по формулам: и , где
находится по таблице значений q по данным .

10.4. Статистические методы изучения зависимостей между случайными величинами

Корреляционной зависимостью У от Х называют функциональную зависимость условной средней от х. Уравнение
представляет уравнение регрессии У на Х, а
- уравнение регрессии Х на У.

Корреляционная зависимость может быть линейной и криволинейной. В случае линейной корреляционной зависимости уравнение прямой линии регрессии имеет вид:
, где угловой коэффициент а прямой линии регрессии У на Х называется выборочным коэффициентом регрессии У на Х и обозначается
.

При малых выборках данные не группируются, параметры
находятся по методу наименьших квадратов из системы нормальных уравнений:

, где п – число наблюдений значений пар взаимосвязанных величин.

Выборочный линейный коэффициент корреляции показывает тесноту связи У и Х. Коэффициент корреляции находится по формуле
, причём
, а именно:


Выборочное уравнение прямой линии регрессии У на Х имеет вид:

.

При большом числе наблюдений признаков Х и У составляется корреляционная таблица с двумя входами, при этом одно и то же значение х наблюдается раз, одно и то же значение у наблюдается раз, одна и та же пара
наблюдается раз.

Пример 35. Дана таблица наблюдений признаков Х и У.

Найти выборочное уравнение прямой линии регрессии У на Х.

Решение. Связь между изучаемыми признаками может быть выражена уравнением прямой линии регрессии У на Х: . Для вычисления коэффициентов уравнения составим расчётную таблицу:

№ наблюдения

Функция распределения в этом случае согласно (5.7), примет вид:

где: m – математическое ожидание, s– среднеквадратическое отклонение.

Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса . Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,, обозначают так: N (m,s), где: m =a =M ;

Достаточно часто в формулах математическое ожидание обозначают через а . Если случайная величина распределена по закону N(0,1), то она называется нормированной или стандартизированной нормальной величиной. Функция распределения для нее имеет вид:

.

График плотности нормального распределения, который называют нормальной кривой или кривой Гаусса, изображен на рис.5.4.

Рис. 5.4. Плотность нормального распределения

Определение числовых характеристик случайной величины по её плотности рассматривается на примере.

Пример 6 .

Непрерывная случайная величина задана плотностью распределения:.

Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).

Сравнивая заданную плотность распределения с (5.16) можно сделать вывод, что задан нормальный закон распределения с m =4. Следовательно, математическое ожидание M(X)=4, дисперсия D(X)=9.

Среднее квадратическое отклонение s=3.

Функция Лапласа, имеющая вид:

,

связана с функцией нормального распределения (5.17), cоотношением:

F 0 (x) = Ф(х) + 0,5.

Функции Лапласа нечётная.

Ф(-x )=-Ф(x ).

Значения функции Лапласа Ф(х) табулированы и берутся из таблицы по значению х (см. Приложение 1).

Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.

С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.

Пусть непрерывная случайная величина Х задана функцией распределения f(x) . Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b ].

Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называется определенный интеграл

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

Определение. Модой М 0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным . Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным .

Определение. Медианой M D случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам. Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Определение. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Х k .

Начальный момент первого порядка равен математическому ожиданию.

Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величины

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии .

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом .

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: . Абсолютный центральный момент: . Абсолютный центральный момент первого порядка называется средним арифметическим отклонением .

Пример. Для рассмотренного выше примера определить математическое ожидание и дисперсию случайной величины Х.

Пример. В урне 6 белых и 4 черных шара. Из нее пять раз подряд извлекают шар, причем каждый раз вынутый шар возвращают обратно и шары перемешивают. Приняв за случайную величину Х число извлеченных белых шаров, составить закон распределения этой величины, определить ее математическое ожидание и дисперсию.

Т.к. шары в каждом опыте возвращаются обратно и перемешиваются, то испытания можно считать независимыми (результат предыдущего опыта не влияет на вероятность появления или непоявления события в другом опыте).

Таким образом, вероятность появления белого шара в каждом опыте постоянна и равна

Таким образом, в результате пяти последовательных испытаний белый шар может не появиться вовсе, появиться один раз, два, три, четыре или пять раз. Для составления закона распределения надо найти вероятности каждого из этих событий.

1) Белый шар не появился вовсе:

2) Белый шар появился один раз:

3) Белый шар появиться два раза: .

Понятия математического ожидания М (Х ) и дисперсии D (X ), введенные ранее для дискретной случайной величины, можно распространить на непрерывные случайные величины.

· Математическое ожидание М (Х ) непрерывной случайной величины Х определяется равенством:

при условии, что этот интеграл сходится.

· Дисперсия D (X ) непрерывной случайной величины Х определяется равенством:

· Среднее квадратическое отклонение σ(Х ) непрерывной случайной величины определяется равенством:

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дискретных случайных величин, справедливы и для непрерывных.

Задача 5.3. Случайная величина Х задана дифференциальной функцией f (x ):

Найти M (X ), D (X ), σ(Х ), а также P (1 < х < 5).

Решение:

M (X )= =

+ = 8/9 0+9/6 4/6=31/18,

D (X )=

= = /

P 1 =

Задачи

5.1. Х

f (x ), а также

Р (‒1/2 < Х < 1/2).

5.2. Непрерывная случайная величина Х задана функцией распределения:

Найти дифференциальную функцию распределения f (x ), а также

Р (2π /9 < Х < π /2).

5.3. Непрерывная случайная величина Х

Найти: а) число с ; б) М (Х ), D (X ).

5.4. Непрерывная случайная величина Х задана плотностью распределения:

Найти: а) число с ; б) М (Х ), D (X ).

5.5. Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

5.6. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

5.7. Функция f (х ) задана в виде:

с Х ; б) функцию распределения F (x ).

5.8. Функция f (x ) задана в виде:

Найти: а) значение постоянной с , при которой функция будет плотностью вероятности некоторой случайной величины Х ; б) функцию распределения F (x ).

5.9. Случайная величина Х , сосредоточенная на интервале (3;7), задана функцией распределения F (х )= Х примет значение: а) меньше 5, б) не меньше 7.

5.10. Случайная величина Х , сосредоточенная на интервале (-1;4), задана функцией распределения F (х )= . Найти вероятность того, что случайная величина Х примет значение: а) меньше 2, б) меньше 4.


5.11.

Найти: а) число с ; б) М (Х ); в) вероятность Р (Х > М (Х )).

5.12. Случайная величина задана дифференциальной функцией распределения:

Найти: а) М (Х ); б) вероятность Р (Х ≤ М (Х )).

5.13. Распределение Ремя задается плотностью вероятности:

Доказать, что f (x ) действительно является плотностью распределения вероятностей.

5.14. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти число с .

5.15. Случайная величина Х распределена по закону Симпсона (равнобедренного треугольника) на отрезке [-2;2] (рис. 5.4). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Рис. 5.4 Рис. 5.5

5.16. Случайная величина Х распределена по закону "прямоугольного треугольника" в интервале (0;4) (рис. 5.5). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Ответы

P (-1/2<X <1/2)=2/3.

P (2π /9<Х < π /2)=1/2.

5.3. а) с =1/6, б) М (Х )=3 , в) D (X )=26/81.

5.4. а) с =3/2, б) М (Х )=3/5, в) D (X )=12/175.

б) M (X )= 3 , D (X )= 2/9, σ(Х )= /3.

б) M (X )=2 , D (X )= 3 , σ(Х )= 1,893.

5.7. а) с = ; б)

5.8. а) с =1/2; б)

5.9. а)1/4; б) 0.

5.10. а)3/5; б) 1.

5.11. а) с = 2; б) М (Х )= 2; в) 1-ln 2 2 ≈ 0,5185.

5.12. а) М (Х )= π /2 ; б) 1/2

Функцией распределения случайной величиныХ называется функцияF (х ), выражающая для каждогох вероятность того, что случайная величинаХ примет значение, меньшеех :
.

Функцию F (х ) иногда называют интегральной функцией распределения, или интегральным законом распределения .

Случайная величина Х называется непрерывной , если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

Примеры непрерывных случайных величин: диаметр детали, которую токарь обтачивает до заданного размера, рост человека, дальность полета снаряда и др.

Теорема. Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю

.

Следствие. Если Х - непрерывная случайная величина, то вероятность попадания случайной величины в интервал
не зависит от того, является этот интервал открытым или закрытым, т.е.

Если непрерывная случайная величина Х может принимать только значения в границах от а до b (где а и b - некоторые постоянные), то функция распределения ее равна нулю для всех значений
и единице для значений
.

Для непрерывной случайной величины

Все свойства функций распределения дискретных случайных величин выполняются и для функций распределения непрерывных случайных величин.

Задание непрерывной случайной величины с помощью функции распределения не является единственным.

Плотностью вероятности (плотностью распределения или плотностью ) р (х ) непрерывной случайной величины Х называется производная ее функции распределения

.

Плотность вероятности р (х ), как и функция распределенияF (х ), является одной из форм закона распределения, но в отличие от функции распределения она существует только длянепрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией, или дифференциальным законом распределения .

График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины:


Рис. 8.1


Рис. 8.2

4.
.

Геометрически свойства плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 8.1. Минутная стрелка электрических часов передвигается скачками поминутно. Вы бросили взгляд на часы. Они показывают а минут. Тогда для вас истинное время в данный момент будет случайной величиной. Найти ее функцию распределения.

Решение. Очевидно, что функция распределения истинного времени равна 0 для всех
и единице для
. Время течет равномерно. Поэтому вероятность того, что истинное время меньше а + 0,5 мин, равна 0,5, так как одинаково вероятно, прошло ли после а менее или более полминуты. Вероятность того, что истинное время меньше а + 0,25 мин, равна 0,25 (вероятность этого времени втрое меньше вероятности того, что истинное время больше а + 0,25 мин, а сумма их равна единице, как сумма вероятностей противоположных событий). Аналогично рассуждая, найдем, что вероятность того, что истинное время меньше а + 0,6 мин, равна 0,6. В общем случае вероятность того, что истинное время меньше а + + α мин
, равна α . Следовательно, функция распределения истинного времени имеет следующее выражение:

Она непрерывна всюду, а производная ее непрерывна во всех точках, за исключением двух:х = а их = а + 1. График этой функции имеет вид (рис. 8.3):

Рис. 8.3

Пример 8.2. Является ли функцией распределения некоторой случайной величины функция

Решение.

Все значения этой функции принадлежат отрезку
, т.е.
. Функция F (х ) является неубывающей: в промежутке
она постоянна, равна нулю, в промежутке
возрастает, в промежутке
также постоянна, равна единице (см. рис. 8.4). Функция непрерывна в каждой точке х 0 области ее определения - промежутка
, поэтому непрерывна слева, т.е. выполняется равенство


,
.

Выполняются и равенства:


,
.

Следовательно, функция
удовлетворяет всем свойствам, характерным для функции распределения. Значит данная функция
является функцией распределения некоторой случайной величиныХ .

Пример 8.3. Является ли функцией распределения некоторой случайной величины функция

Решение. Данная функция не является функцией распределения случайной величины, так как напромежутке она убывает и не является непрерывной. График функции изображен на рис. 8.5.

Рис. 8.5

Пример 8.4. Случайная величина Х задана функцией распределения

Найти коэффициент а и плотность вероятности случайной величины Х . Определить вероятность неравенства
.

Решение. Плотность распределения равна первой производной от функции распределения

Коэффициент а определяем с помощью равенства

,

.

Тот же результат можно было получить, используя непрерывность функции
в точке


,
.

Следовательно,
.

Поэтому плотность вероятности имеет вид

Вероятность
попадания случайной величины Х в заданный промежуток вычисляется по формуле

Пример 8.5. Случайная величина Х имеет плотность вероятности (закон Коши)

.

Найти коэффициент а и вероятность того, что случайная величина Х примет какое-нибудь значение из интервала
. Найти функцию распре­деления этой случайной величины.

Решение. Найдем коэффициент а из равенства

,

Следовательно,
.

Итак,
.

Вероятность того, что случайная величина Х примет какое-нибудь значение из интервала
, равна

Найдем функцию распределения данной случайной величины

Пример 8.6. График плотности вероятности случайной величиныХ изображен на рис. 8.6 (закон Симпсона). Написать выражение плотности вероятности ифункцию распределения этой случайной величины.

Рис. 8.6

Решение. Пользуясь графиком, записываем аналитическое выражение плотности распределения вероятностей данной случайной величины

Найдем функцию распределения.

Если
, то
.

Если
, то .

Если
, то

Если
, то

Следовательно, функция распределения имеет вид

Последние материалы раздела:

Ограничение бросков тока при включении нагрузки низкой и средней мощности Ограничение тока заряда конденсатора в блоке питания
Ограничение бросков тока при включении нагрузки низкой и средней мощности Ограничение тока заряда конденсатора в блоке питания

Конденсатор (capacitor, cap) - это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается...

Однопетлевой свч-синтезатор с-диапазона с малым шагом перестройки частоты Свч синтезаторы высокого разрешения по частоте
Однопетлевой свч-синтезатор с-диапазона с малым шагом перестройки частоты Свч синтезаторы высокого разрешения по частоте

Проблема стабильности частоты в приемопередающих устройствах существовала всегда. На относительно низких частотах (до 100-150 МГц) она решалась...

Имя пользователя для Инстаграмма на английском для девушки: примеры
Имя пользователя для Инстаграмма на английском для девушки: примеры

Каждый геймер сталкивается с необходимостью выбора имени персонажа для онлайн-игры. Это совсем не просто, ведь хочется, чтобы виртуальное имя...